Hålogaland Suspension Bridge, Narvik, Norway

IABSE Denmark Mini-seminar 2013 Lars Jensen COWI A/S

Bjerkvik

Introduction

Scope of Work:

- Basic design for 2 suspension bridge solutions incl. construction cost estimates
- Detailed design for 1 suspension bridge solution

COWI Team:

• COWI

Project management, global and aerodynamic analyses, cable structures, steel box girder, cable anchorages, approach viaducts

- Dissing+Weitling
- Johs Holt
- NGI

Architect

Pylons incl. foundations

Expert rock cable anchorages and foundations

Client: Norwegian Public Roads Administration, Region North

Hålogaland Bridge

- 2007-2008: Basic Design and construction cost estimates
- 2009-2010: Tender Project (Detailed Design)
- 2012: Financing finally approved by Stortinget
- 2012: Tender documents finalised
- 2012 (Oct): Road and rock works tendered
- 2013 (Feb): Concrete works tendered contract in June
- 2013 (Apr): Steel and cable works tendered contract in August
- 2017: Bridge to be completed

Bridge layout

Challenges:

- Aerodynamic issues
- Inclined cable system
- Pylon foundations at level -30 m
- Transition from Clients standard rules to Eurocode during the project period
- Eurocode Hålogaland Bridge is the first suspension bridge in Norway designed in accordance with Eurocode
- International contractors and suppliers?
 - Text on all drawings is in Norwegian as well as English
 - Particular specifications prepared in Norwegian as well as English

Bridge layout

Characteristics:

- Single span suspension bridge
- Second longest main span in Norway, 1145 m
- Span to sag ratio is 9.5
- Cables anchored directly to the rock
- Vertical navigation clearance 40 m above high water

Cross section:

- Closed steel box girder
- Total width of bridge deck 18.6 m

General arrangement:

- Deck panel: 14 mm deck plate, 6 mm trough stiffeners
- Bottom panel: 8 mm bottom plate, 6 mm trough stiffeners
- Diaphragms each 4.0 m
- Steel grade: NS EN 10025 S355N or M
- Steel quantity 7100 t equivalent to 480 kg/m²

Main cables

General arrangement:

- 5.38 mm wires breaking strength 1770 MPa
- Design is based on air spinning as construction method – similar to Hardanger Bridge
- 19 strands in main span each having 328 wires
- 6232 wires in total area 0.142 m²
- Cable diameter after compaction 0.478 m
- Additional strands in side spans due to local site constraints
- Tender is also open for PPWS as construction method – 60 strands in main span each having 91 wires of 5.75 mm diameter
- Steel quantity approx 4000 t

Main cables

Distribution of unfactored tension for 1770 MPa cables

Dead load, cables	16%
Dead load, steel deck	40%
Dead load, pavement	18%
Dead load, equipment	4%
Dead load, total	78%
Dead load, total Traffic	78% 16%

Main cables Application of high strength steel

Cable wires – breaking strength:

•	1570 MPa – Storebælt, Denmark	(opened 1998)
•	1770 MPa – Akashi-Kaikyo, Japan	(opened 1998)
•	1860 MPa – Yi Sun-Sin, Korea	(opened 2012)
•	1960 MPa – 3 bridges under construction, Korea	(planned 2014-2018)

General data for main cables	Unit	1570 MPa	1770 MPa	1860 MPa
Cable area	m²	0.165	0.142	0.133
Cable, diameter	mm	515	478	464
Cable steel quantity	t	4675	4020	3780

Main cables Application of high strength steel

Cable wire strength	Area	Δ -quantity	Deflection	Cable diameter
1570 MPa	116%	+ 655 t	89%	0.52 m
1770 MPa	100%	-	100%	0.48 m
1860 MPa	94%	- 240 t	105%	0.46 m

Conclusions:

- Cable forces due to dead load and cable quantities are reduced by adopting the highest possible cable wire strength
- Thereby significant cost savings are obtained in cables and anchorages
- Related savings are obtained in pylons, foundations and construction time
- Smaller wind load due to smaller cable diameter
- Slightly increased deflections

Pylons

General arrangement:

- Slender
- A-shaped, concrete, inclined cable planes
- Simple geometrical shape
- Light appearance due to tapering downwards
- Landmark for the region

Cable structures Saddles

Tower saddles:

- Welded steel structures
- Steel grade: NS EN 10025 S460N eller M
- Ribs: 50-60 mm
- Troughs: 80-120 mm
- Quantity approx 50 t
- "Open" structures easy to inspect and maintain

Cable structures Hangers

General arrangement:

- Locked coil cables 130 t
- EN 12385-10 1570 MPa
- Min breaking load 4.89 MN
- Diameter 70 mm
- Painted

Cable structures Cable clamps

General arrangement:

- Cast steel or welded steel structures 50 t
- Membrane: 20 mm
- Eye plate: 55 mm, 15 mm cheek plates
- Stål grade: Cast steel NS EN 10293 G20MN5+QT eller NS EN 10025 S355NL
- Bolts easy to inspect and replace

Aerodynamic issues

Challenges:

- Document sufficient critical wind speed
- Avoid vortex shedding excitation of the steel box girder

Critical wind speed Background

Requirement for Hålogaland bridge is 63.1 m/s

Documented critical wind speed for box girder suspension bridges

Critical wind speed Wind tunnel tests

Vortex shedding excitation

The box section is arranged in such a way that the slope of the lower inclined side plates is at 15.8 degrees in relation to the horizontal bottom plate

Thereby the sensitivity to vortex shedding excitation is reduced and it is not required to install guide vanes

New system:

- Dehumidification by dry air flow through the cables in addition to galvanizing of the cable wires
- Effectiveness is proven on suspension bridges in Denmark, Sweden, France and Japan

Background for new system:

- Nowadays design lifetime up to 200 years is required (Messina Bridge)
- Life Cycle Costs for bridges shall be minised
- System is developed based on experience gained from application of dehumidification systems in closed steel box girders

Features of dehumidification system:

- Complete corrosion protection of the cables
- Cables enclosed in an atmosphere with relative humidity below 60% - thereby corrosion cannot occur
- System provides overpressure in the cables thereby water/moisture cannot enter the cables through any leaks

Dehumidification system comprises 3 major components:

- Sealing system for the cables
- Dehumidification system producing and blowing dry air through the cables
- Control and monitoring system for system functionality, relative humidity, temperature, flow and pressure

Component 1: sealing system:

- Elastomeric wrap for cable sections between cable bands
- Applied under tension with a 50% overlap
- Special details developed for cable bands etc. using combinations of sealer strips and adhesive caulk

Component 2: dehumidification system:

- Produces dry air and blows it through the cables max 40% relative humidity at injection points
- Overpressure inside the sealed cables at injection points max. 2.5 kPa
- Components: dehumidification plants, injection points and exhaust points

Component 3: control and monitoring system:

• Temperature, relative humidity, flow and pressure are measured at all injection and exhaust sleeves for permanent monitoring of system operation and documentation of corrosion protection

Hålogaland Bridge:

• Handbook 185 requires dehumidification of main cables

